## Text Categorization

### Categorization

- Given:
  - A description of an instance,  $x \in X$ , where X is the *instance language* or *instance space*.
  - A fixed set of categories:  $C=\{c_1, c_2,...c_n\}$
- Determine:
  - The category of x:  $c(x) \in C$ , where c(x) is a categorization function whose domain is X and whose range is C.

2

### Learning for Categorization

- A training example is an instance x∈X, paired with its correct category c(x):
   <x, c(x)> for an unknown categorization function, c.
- Given a set of training examples, D.
- Find a hypothesized categorization function, h(x), such that:

$$\forall < x, c(x) > \in D : h(x) = c(x)$$
Consistency

### Sample Category Learning Problem

- Instance language: <size, color, shape>
  - size ∈ {small, medium, large}
  - color ∈ {red, blue, green}
  - shape  $\in$  {square, circle, triangle}
- $C = \{\text{positive, negative}\}$
- D

| • | Example | Size  | Color | Shape    | Category |
|---|---------|-------|-------|----------|----------|
|   | 1       | small | red   | circle   | positive |
|   | 2       | large | red   | circle   | positive |
|   | 3       | small | red   | triangle | negative |
|   | 4       | large | blue  | circle   | negative |

### General Learning Issues

- Many hypotheses are usually consistent with the training data.
- Rias
  - Any criteria other than consistency with the training data that is used to select a hypothesis.
- Classification accuracy (% of instances classified correctly).
  - Measured on independent test data.
- Training time (efficiency of training algorithm).
- Testing time (efficiency of subsequent classification).

### .

### Generalization

- Hypotheses must generalize to correctly classify instances not in the training data.
- Simply memorizing training examples is a consistent hypothesis that does not generalize.
- Occam's razor:
  - Finding a *simple* hypothesis helps ensure generalization.

### **Text Categorization**

- · Assigning documents to a fixed set of categories.
- Applications:
  - Web pages

  - Recommending
     Yahoo-like classification
  - Newsgroup Messages
    - Recommending
       spam filtering

  - News articles
  - · Personalized newspaper
  - Email messages

    - Routing
       Prioritizing

    - Folderizing
       spam filtering

### Learning for Text Categorization

- Manual development of text categorization functions is difficult.
- Learning Algorithms:
  - Bayesian (naïve)
  - Neural network
  - Relevance Feedback (Rocchio)
  - Rule based (Ripper)
  - Nearest Neighbor (case based)
  - Support Vector Machines (SVM)

### Using Relevance Feedback (Rocchio)

- Relevance feedback methods can be adapted for text categorization.
- Use standard TF/IDF weighted vectors to represent text documents (normalized by maximum term frequency).
- For each category, compute a *prototype* vector by summing the vectors of the training documents in the category.
- Assign test documents to the category with the closest prototype vector based on cosine similarity.

| _ |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

## Illustration of Rocchio Text Categorization

### Rocchio Text Categorization Algorithm (Training)

Assume the set of categories is  $\{c_1, c_2,...c_n\}$ For i from 1 to n let  $\mathbf{p}_i = <0, 0,...,0>$  (init. prototype vectors) For each training example  $\langle x, c(x) \rangle \in D$ Let  ${\bf d}$  be the frequency normalized TF/IDF term vector for doc  ${\bf x}$ Let i = j:  $(c_j = c(x))$ (sum all the document vectors in  $c_i$  to get  $p_i$ )

Let  $\mathbf{p}_i = \mathbf{p}_i + \mathbf{d}$ 

### Rocchio Text Categorization Algorithm (Test)

Given test document xLet  $\mathbf{d}$  be the TF/IDF weighted term vector for xLet m = -2 (init. maximum cosSim) For i from 1 to n: (compute similarity to prototype vector) Let  $s = \cos \operatorname{Sim}(\mathbf{d}, \mathbf{p}_i)$ if s > mlet m = slet  $r = c_i$  (update most similar class prototype) Return class r

### **Rocchio Properties**

- Does not guarantee a consistent hypothesis.
- Forms a simple generalization of the examples in each class (a *prototype*).
- Prototype vector does not need to be averaged or otherwise normalized for length since cosine similarity is insensitive to vector length.
- Classification is based on similarity to class prototypes.

13

### Rocchio Time Complexity

- Note: The time to add two sparse vectors is proportional to minimum number of non-zero entries in the two vectors.
- Training Time:  $O(|D|(L_d + |V_d|)) = O(|D| L_d)$  where  $L_d$  is the average length of a document in D and  $|V_d|$  is the average vocabulary size for a document in D.
- Test Time:  $O(L_t + |C||V_t|)$  where  $L_t$  is the average length of a test document and  $|V_t|$  is the average vocabulary size for a test document.
  - Assumes lengths of  $\mathbf{p}_i$  vectors are computed and stored during training, allowing  $\operatorname{cosSim}(\mathbf{d},\mathbf{p}_i)$  to be computed in time proportional to the number of non-zero entries in  $\mathbf{d}$  (i.e.  $|V_t|$ )

14

### Nearest-Neighbor Learning Algorithm

- Learning is just storing the representations of the training examples in *D*.
- Testing instance *x*:
  - Compute similarity between x and all examples in D.
  - Assign x the category of the most similar example in D.
- Does not explicitly compute a generalization or category prototypes.
- Also called:
  - Case-based
  - Memory-based
  - Lazy learning

### K Nearest-Neighbor

- Using only the closest example to determine categorization is subject to errors due to:
  - A single atypical example.
  - Noise (i.e. error) in the category label of a single training example.
- More robust alternative is to find the *k* most-similar examples and return the majority category of these *k* examples.
- Value of *k* is typically odd to avoid ties, 3 and 5 are most common.

16

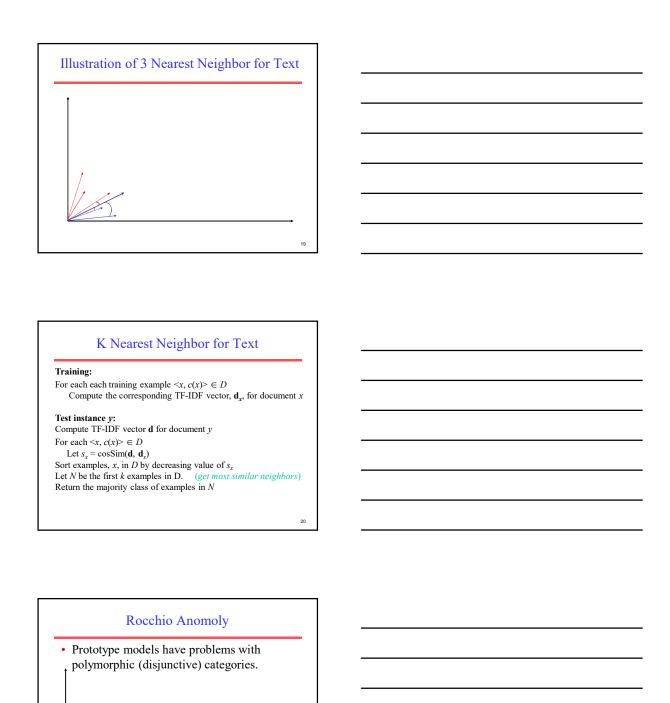
### **Similarity Metrics**

- Nearest neighbor method depends on a similarity (or distance) metric.
- Simplest for continuous *m*-dimensional instance space is *Euclidian distance*.
- Simplest for m-dimensional binary instance space is Hamming distance (number of feature values that differ).
- For text, cosine similarity of TF-IDF weighted vectors is typically most effective.

17

3 Nearest Neighbor Illustration (Euclidian Distance)





### 3 Nearest Neighbor Comparison

 Nearest Neighbor tends to handle polymorphic categories better.



22

### Nearest Neighbor Time Complexity

- Training Time:  $O(|D| L_d)$  to compose TF-IDF vectors.
- Testing Time:  $O(L_t + |D||V_t|)$  to compare to all training vectors.
  - Assumes lengths of d<sub>x</sub> vectors are computed and stored during training, allowing cosSim(d, d<sub>x</sub>) to be computed in time proportional to the number of non-zero entries in d (i.e. |V|)
- Testing time can be high for large training sets

23

### Nearest Neighbor with Inverted Index

- Determining k nearest neighbors is the same as determining the k best retrievals using the test document as a query to a database of training documents.
- Use standard VSR inverted index methods to find the *k* nearest neighbors.
- Testing Time:  $O(B|V_t|)$  where B is the average number of training documents in which a test-document word appears.
- Therefore, overall classification is  $O(L_t + B|V_t|)$ - Typically  $B \ll |D|$

### **Bayesian Methods**

- Learning and classification methods based on probability theory.
- Bayes theorem plays a critical role in probabilistic learning and classification.
- Uses *prior* probability of each category given no information about an item.
- Categorization produces a posterior probability distribution over the possible categories given a description of an item.

25

### **Axioms of Probability Theory**

- All probabilities between 0 and 1  $0 \le P(A) \le 1$
- True proposition has probability 1, false has probability 0.

$$P(true) = 1$$
  $P(false) = 0$ .

• The probability of disjunction is:

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$



26

### **Conditional Probability**

- $P(A \mid B)$  is the probability of A given B
- Assumes that *B* is all and only information known.
- Defined by:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$



### Independence

• *A* and *B* are *independent* iff:

$$P(A \mid B) = P(A)$$
 These two constraints are logically equivalent  $P(B \mid A) = P(B)$ 

• Therefore, if A and B are independent:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = P(A)$$

$$P(A \wedge B) = P(A)P(B)$$

### Joint Distribution

The joint probability distribution for a set of random variables,  $X_1, \dots, X_n$  gives the probability of every combination of values (an n-dimensional array with  $\nu^n$  values if all variables are discrete with  $\nu$  values, all  $\nu^n$  values must sum to 1):  $P(X_1, \dots, X_n)$ 

| positive |        |        |  |  |  |
|----------|--------|--------|--|--|--|
|          | circle | square |  |  |  |
| red      | 0.20   | 0.02   |  |  |  |
|          | 0.00   | 0.01   |  |  |  |

| negative |        |        |  |
|----------|--------|--------|--|
|          | circle | square |  |
| red      | 0.05   | 0.30   |  |
| blue     | 0.20   | 0.20   |  |

• The probability of all possible conjunctions (assignments of values to some subset of variables) can be calculated by summing the appropriate subset of values from the joint distribution.

 $P(red \land circle) = 0.20 + 0.05 = 0.25$ P(red) = 0.20 + 0.02 + 0.05 + 0.3 = 0.57

• Therefore, all conditional probabilities can also be calculated.  $P(positive \mid red \land circle) = \frac{P(positive \land red \land circle)}{P(red \land circle)} = \frac{0.20}{0.25} = 0.80$ 

### Probabilistic Classification

- Let Y be the random variable for the class which takes values  $\{y_1,y_2,\ldots y_m\}$ .
- Let X be the random variable describing an instance consisting of a vector of values for n features  $\langle X_1, X_2, ... X_n \rangle$ , let  $x_k$  be a possible value for X and  $x_{ij}$  a possible value for  $X_i$ .
- For classification, we need to compute  $P(Y=y_i | X=x_k)$  for i=1...m
- However, given no other assumptions, this requires a table giving the probability of each category for each possible instance in the instance space, which is impossible to accurately estimate from a reasonably-sized training set.

Assuming Y and all  $X_i$  are binary, we need  $2^n$  entries to specify  $P(Y=pos | X=x_k)$  for each of the  $2^n$  possible  $x_k$ 's since  $P(Y=nog | X=x_k) = 1 - P(Y=nog | X=x_k)$  Compared to  $2^{n+1} - 1$  entries for the joint distribution  $P(Y_i, X_1, X_2, ..., X_n)$ 

### **Bayes Theorem**

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

Simple proof from definition of conditional probability:

$$P(H \mid E) = \frac{P(H \land E)}{P(E)} \quad \text{(Def. cond. prob.)}$$
 
$$P(E \mid H) = \frac{P(H \land E)}{P(H)} \quad \text{(Def. cond. prob.)}$$
 
$$P(H \land E) = P(E \mid H)P(H)$$

**QED:** 
$$P(H | E) = \frac{P(E | H)P(H)}{P(E)}$$

31

### **Bayesian Categorization**

• Determine category of  $x_k$  by determining for each  $y_i$ 

$$P(Y = y_i \mid X = x_k) = \frac{P(Y = y_i)P(X = x_k \mid Y = y_i)}{P(X = x_k)}$$

• P(X=x<sub>k</sub>) can be determined since categories are complete and disjoint.

$$\sum_{i=1}^{m} P(Y = y_i \mid X = x_k) = \sum_{i=1}^{m} \frac{P(Y = y_i)P(X = x_k \mid Y = y_i)}{P(X = x_k)} = 1$$

$$P(X = x_k) = \sum_{i=1}^{m} P(Y = y_i)P(X = x_k \mid Y = y_i)$$

32

### Bayesian Categorization (cont.)

- · Need to know:
  - Priors:  $P(Y=y_i)$
  - Conditionals:  $P(X=x_k | Y=y_i)$
- $P(Y=y_i)$  are easily estimated from data.
  - If  $n_i$  of the examples in D are in  $y_i$  then  $P(Y=y_i) = n_i/|D|$
- Too many possible instances (e.g.  $2^n$  for binary features) to estimate all  $P(X=x_k | Y=y_i)$ .
- Still need to make some sort of independence assumptions about the features to make learning tractable.

### Generative Probabilistic Models

- Assume a simple (usually unrealistic) probabilistic method by which the data was generated.
- For categorization, each category has a different parameterized generative model that characterizes that
- category.

  Training: Use the data for each category to estimate the parameters of the generative model for that category.

  Maximum Likelihood Estimation (MLE): Set parameters to maximize the probability that the model produced the given training data.

  If  $M_k$  denotes a model with parameter values  $\lambda$  and  $D_k$  is the training data for the kth class, find model parameters for class k ( $\lambda_k$ ) that maximize the likelihood of  $D_k$ :

 $\lambda_k = \operatorname{argmax} P(D_k \mid M_{\lambda})$ 

Testing: Use Bayesian analysis to determine the category model that most likely generated a specific test instance.

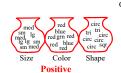
### Naïve Bayes Generative Model







Naïve Bayes Inference Problem





### Naïve Bayesian Categorization

• If we assume features of an instance are independent given the category (conditionally independent).

$$P(X | Y) = P(X_1, X_2, \dots X_n | Y) = \prod_{i=1}^{n} P(X_i | Y)$$

- Therefore, we then only need to know P(X<sub>i</sub> | Y) for each possible pair of a feature-value and a category.
- If Y and all  $X_i$  and binary, this requires specifying only 2nparameters:
  - $P(X_i = true \mid Y = true)$  and  $P(X_i = true \mid Y = false)$  for each  $X_i$
  - $P(X_i = \text{false} \mid Y) = 1 P(X_i = \text{true} \mid Y)$
- Compared to specifying 2<sup>n</sup> parameters without any independence assumptions.

### Naïve Bayes Example

| Probability     | positive | negative |  |
|-----------------|----------|----------|--|
| P(Y)            | 0.5      | 0.5      |  |
| P(small   Y)    | 0.4      | 0.4      |  |
| P(medium   Y)   | 0.1      | 0.2      |  |
| P(large   Y)    | 0.5      | 0.4      |  |
| P(red   Y)      | 0.9      | 0.3      |  |
| P(blue   Y)     | 0.05     | 0.3      |  |
| P(green   Y)    | 0.05     | 0.4      |  |
| P(square   Y)   | 0.05     | 0.4      |  |
| P(triangle   Y) | 0.05     | 0.3      |  |
| P(circle   Y)   | 0.9      | 0.3      |  |

Test Instance: <medium,red, circle>

### Naïve Bayes Example

| Probability   | positive | negative |
|---------------|----------|----------|
| P(Y)          | 0.5      | 0.5      |
| P(medium   Y) | 0.1      | 0.2      |
| P(red   Y)    | 0.9      | 0.3      |
| P(circle   Y) | 0.9      | 0.3      |

Test Instance: <medium, red, circle>

 $P(positive \mid X) = P(positive)*P(medium \mid positive)*P(red \mid positive)*P(circle \mid positive) / P(X) \\ 0.5 * 0.1 * 0.9 * 0.9$ 

= 0.0405 / P(X) = 0.0405 / 0.0495 = 0.8181

 $P(negative \mid X) = P(negative) *P(medium \mid negative) *P(red \mid negative) *P(circle \mid negative) / P(X) \\ 0.5 * 0.2 * 0.3 * 0.3 \\ = 0.009 / P(X) = 0.009 / 0.0495 = 0.1818$ 

 $P(positive \mid X) + P(negative \mid X) = 0.0405 / P(X) + 0.009 / P(X) = 1$ 

P(X) = (0.0405 + 0.009) = 0.0495

### **Estimating Probabilities**

- Normally, probabilities are estimated based on observed frequencies in the training data.
- If D contains  $n_k$  examples in category  $y_k$ , and  $n_{ijk}$  of these  $n_k$  examples have the jth value for feature  $X_i$ ,  $X_{ij}$ , then:

$$P(X_i = x_{ij} \mid Y = y_k) = \frac{n_{ijk}}{n}$$

- $P(X_i = x_{ij} \mid Y = y_k) = \frac{n_{ijk}}{n_k}$  However, estimating such probabilities from small training sets is error-prone.
- If due only to chance, a rare feature,  $X_i$ , is always false in the training data,  $\forall y_k : P(X_i = \text{true} \mid Y = y_k) = 0$ .
- If  $X_i$ =true then occurs in a test example, X, the result is that  $\forall y_k : P(X | Y=y_k) = 0$  and  $\forall y_k : P(Y=y_k | X) = 0$

### **Probability Estimation Example**

| Ex               | Size                                  | Color | Shape    | Category | Probability     | positive | negative |
|------------------|---------------------------------------|-------|----------|----------|-----------------|----------|----------|
| LX               | Size                                  | Color | Shape    | Category | P(Y)            | 0.5      | 0.5      |
| 1                | small                                 | red   | circle   | positive | P(small   Y)    | 0.5      | 0.5      |
| _                | ١.                                    | 1.    |          | 1,0      | P(medium   Y)   | 0.0      | 0.0      |
| 2                | large                                 | red   | circle   | positive | P(large   Y)    | 0.5      | 0.5      |
| 3                | small                                 | red   | triangle | negative | P(red   Y)      | 1.0      | 0.5      |
|                  |                                       |       |          |          | P(blue   Y)     | 0.0      | 0.5      |
| 4                | large                                 | blue  | circle   | negative | P(green   Y)    | 0.0      | 0.0      |
|                  |                                       |       |          |          | P(square   Y)   | 0.0      | 0.0      |
| Test Instance X: |                                       |       |          |          | P(triangle   Y) | 0.0      | 0.5      |
|                  | <medium, circle="" red,=""></medium,> |       |          |          | P(circle   Y)   | 1.0      | 0.5      |

P(positive | X) = 0.5 \* 0.0 \* 1.0 \* 1.0 / P(X) = 0

 $P(\text{negative} \mid X) = 0.5 * 0.0 * 0.5 * 0.5 / P(X) = 0$ 

### Smoothing

- To account for estimation from small samples, probability estimates are adjusted or smoothed.
- Laplace smoothing using an *m*-estimate assumes that each feature is given a prior probability, p, that is assumed to have been previously observed in a "virtual" sample of size m.

$$P(X_i = x_{ij} | Y = y_k) = \frac{n_{ijk} + mp}{n_k + m}$$

• For binary features, p is simply assumed to be 0.5.

### Laplace Smothing Example

- Assume training set contains 10 positive examples:
  - 4: small
  - 0: medium
  - 6: large
- Estimate parameters as follows (if m=1, p=1/3)
  - $P(\text{small} \mid \text{positive}) = (4 + 1/3) / (10 + 1) = 0.394$
  - P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03
  - $P(large \mid positive) = (6 + 1/3) / (10 + 1) = 0.576$
  - P(small or medium or large | positive) = 1.0

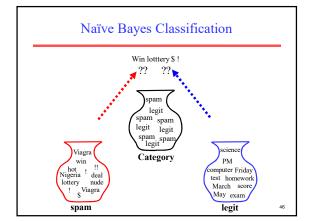
...

### Naïve Bayes for Text

- Modeled as generating a bag of words for a document in a given category by repeatedly sampling with replacement from a vocabulary  $V = \{w_1, w_2, ... w_m\}$  based on the probabilities  $P(w_j \mid c_i)$ .
- Smooth probability estimates with Laplace m-estimates assuming a uniform distribution over all words (p = 1/|V|) and m = |V|
  - Equivalent to a virtual sample of seeing each word in each category exactly once.

44

# Naïve Bayes Generative Model for Text | Spam | legit | spam | spam | spam | spam | spam | legit | spam | spam | legit | science | science



## Text Naïve Bayes Algorithm (Train)

Let V be the vocabulary of all words in the documents in D For each category  $c_i \in C$ 

Let  $D_i$  be the subset of documents in D in category  $c_i$  $P(c_i) = |D_i| / |D|$ 

Let  $T_i$  be the concatenation of all the documents in  $D_i$ Let  $n_i$  be the total number of word occurrences in  $T_i$ For each word  $w_i \in V$ 

Let  $n_{ij}$  be the number of occurrences of  $w_j$  in  $T_i$ Let  $P(w_j | c_i) = (n_{ij} + 1) / (n_i + |V|)$ 

47

## Text Naïve Bayes Algorithm (Test)

Given a test document XLet n be the number of word occurrences in XReturn the category:

$$\underset{c_i \in C}{\operatorname{argmax}} P(c_i) \prod_{i=1}^n P(a_i \mid c_i)$$

 $c_i \in C$  where  $a_i$  is the word occurring the *i*th position in X

### **Underflow Prevention**

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since  $\log(xy) = \log(x) + \log(y)$ , it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

49

### Naïve Bayes Posterior Probabilities

- Classification results of naïve Bayes (the class with maximum posterior probability) are usually fairly accurate.
- However, due to the inadequacy of the conditional independence assumption, the actual posterior-probability numerical estimates are not.
  - Output probabilities are generally very close to 0 or 1.

50

### **Evaluating Categorization**

- Evaluation must be done on test data that are independent of the training data (usually a disjoint set of instances).
- Classification accuracy: c/n where n is the total number of test instances and c is the number of test instances correctly classified by the system.
- Results can vary based on sampling error due to different training and test sets.
- Average results over multiple training and test sets (splits of the overall data) for the best results.

### N-Fold Cross-Validation

- Ideally, test and training sets are independent on each trial.
  - But this would require too much labeled data.
- Partition data into N equal-sized disjoint segments.
- Run N trials, each time using a different segment of the data for testing, and training on the remaining N-1 segments.
- This way, at least test-sets are independent.
- Report average classification accuracy over the N trials.
- Typically, N = 10.

52

### **Learning Curves**

- In practice, labeled data is usually rare and expensive.
- Would like to know how performance varies with the number of training instances.
- *Learning curves* plot classification accuracy on independent test data (*Y* axis) versus number of training examples (*X* axis).

53

### *N*-Fold Learning Curves

- Want learning curves averaged over multiple trials.
- Use *N*-fold cross validation to generate *N* full training and test sets.
- For each trial, train on increasing fractions of the training set, measuring accuracy on the test data for each point on the desired learning curve.

